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• What is the RAAS Project? 
– Research project on aerobraking, financed by ESA and carried 

out by DEIMOS-Space and TAS-F with following major goals: 
• Define systematically aerobraking phases and constraints 

– Walk-In, Main Phase, Walk-Out 

• Design GNC algorithms and operations strategies enabling 
aerobraking missions with a certain autonomy and robustness 

– Autonomy of 1 week 
– Robustness to dust storms without interruptions of operations and to   

superior solar conjunctions with pop-up manoeuvres 

• Validate above algorithms and strategies with dedicated tools: 
– MAS: 3-DOF Mission Analysis Simulator for long-term validation of 

the orbit guidance algorithms and mission operations approach 
(DEIMOS-Space) 

– Hi-FAS: 6-DOF High Fidelity Analysis Simulator for short-term 
validation of the attitude GNC algorithms, mode management and FDIR 
strategies (TAS-F) 

 

• Main information sources on aerobraking techniques: 
– Literature from past aerobraking missions (Mars Global 

Surveyor, Mars Odyssey, Mars Reconnaissance Orbiter) 

IntroductionIntroduction  toto  RAASRAAS  
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• Past missions approach: 
– Constant corridors of peak dynamic pressure or heat flux 
– Regular corridor updates during mission operations based on 

analysis of S/C thermal telemetry 
• Complex and resource demanding 

 

• Proposed approach: 
– Corridor purpose: 

• Upper Boundary limits maximum solar array temperature 
• Lower Boundary guarantees a minimum dynamic pressure to 

achieve final orbit within a maximum amount of time  

– Drag pass duration affects greatly thermal behaviour: 
• The higher the duration, the higher the array temperature (at a 

given peak heat flux) 

– Proposed solution: 
• Off-line computation of corridors adapting to drag pass geometry:  

– 1-D Approach: Allowed band of peak heat flux as a function of 
apocentre altitude 

– 2-D Approach: Allowed region in peak heat flux-heat load plane 

Pericentre Control: Pericentre Control: CorridorCorridor  DefinitionDefinition  
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• Baseline Guidance Purpose: 
– Compensate predictable orbit effects on a few days scale with 

ABMs at apocentre to raise/lower pericentre 
 

• Baseline Guidance Logic: 
– Baseline ABMs ensure that the predicted control variables 

evolution during each control interval fulfills as much as 
possible the aerobraking corridor 

Pericentre Control: Pericentre Control: BaselineBaseline  GuidanceGuidance    
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• Correction Guidance Purpose: 
– Compensate autonomously onboard sudden density changes 

at pericentre (e.g. due to dust storms) on a short term 
 

• Correction Guidance Logic: 
– Correction ABMs reproduce the baseline predicted evolution 

of control variables, whenever next pass onboard predicted 
control variables fall outside the control corridor 

Pericentre Control: Pericentre Control: CorrectionCorrection  GuidanceGuidance    

• Logical Steps: 
– Measure peak heat flux and update 

scale factor for predictions (3 days 
moving average of measurements) 

– Predict next pass control variables 
with updated scale factor 

– If predictions violate corridor, 
compute a correction ABM to 
reproduce baseline heat flux value 

CORRECTION ABM EFFECT 
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• Two mission autonomy levels 
have been proposed: 
– Level 1: Ground Baseline 

Guidance, Onboard Correction 
Guidance 

– Level 2: Onboard Baseline & 
Correction Guidance 

 

• Mission operations feature a loop 
of activities per upload interval: 
– Upload Interval Predictions: 

• Orbit predictions and baseline 
guidance (for autonomy level 1 
only) to be uplinked to S/C 

– Upload Interval Operations: 
• Onboard algorithms execution, 

execution of ABMs and attitude 
switch manoeuvres, S/C tracking 
campaign 

MissionMission  OperationsOperations  ApproachApproach  

LOOP OF MISSION OPERATIONS 
ACTIVITIES (1 UPLOAD INTERVAL) 
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• Upload interval predictions are required to: 
– Build a data package to be uplinked to S/C, which contains  

data necessary for the autonomous execution of onboard 
algorithms throughout the upload interval 

 

• Data package contains: 
– Baseline guidance (only for autonomy level 1) 
– Pericentre passes data (heat flux, heat load, altitude, scale 

height, epoch, inertial velocity) throughout upload interval 

UploadUpload  IntervalInterval  PredictionsPredictions  
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UploadUpload  IntervalInterval  Real Time Real Time OperationsOperations  

• During real time operations, the 
following algorithms are 
executed every orbit: 
– Pericentre Time Estimator 

• Autonomous update of in-orbit 
manoeuvres sequence 

– Atmosphere Estimation Function 
• Scale factor evaluation 

– Onboard Correction ABM Planner 
• Planning of correction ABMs 

– Onboard Baseline ABM Planner 
• Planning of baseline ABMs (only 

for autonomy level 2) 
 

• Terminal Activities: 
– S/C tracking campaign to estimate 

state vector for next upload 
interval predictions 

REAL TIME OPERATIONS LOOP 
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GNC and Attitude ControlGNC and Attitude Control  

• Autonomous Mode Management 
– GNC must perform several tasks within one orbit: 

• Drag pass attitude control 
• Pericentre altitude control manoeuvres at apocentre 
• Routine attitude control outside atmosphere 
• Reaction Wheels unloading 

– Autonomous Mode Management 
• Three flags (guidance, navigation, control) 
• It allows to switch between functions to activate 

 

• Attitude Control in Atmospheric Pass 
– Stable Configuration required 
– Loose thrusters-based angular 

rate controller 
• Low fuel consumption 
• Use of disturbance torques 

to perform RWS unloading 
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FDIR StrategiesFDIR Strategies  

• Two FDIR levels: 
– Safe Mode 

• Activated in case of Power alarm or Communication blackout 
• Aerobraking not suspended 
• Autonomous detection of atmosphere through IMU measurements 
• Maximum duration of 4 days (required orbit lifetime) 

 

– Automatic Pop-Up 
• In case of thermal alarm, aerobraking is interrupted 
• One single manoeuvre to raise the pericentre to 150 km 
• Feasible in both normal mode and safe mode 
• Risk of mission loss: 

– Solar Arrays are the most sensitive to temperature 
– Important loss of power  loss of mission but not immediate 

– Pop-Up necessary to avoid uncontrolled re-entry (forward contamination 
planetary protection requirement) 
 

 

– Lower-level (consistency checks…) not defined in the frame of 
the study 
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• RAAS validation campaign features: 
– Long-Term Validation 

• Validation of mission operations design and pericentre control 
strategies throughout the whole aerobraking duration 

• Carried out with a Mission Analysis Simulator (MAS), featuring 3-
DOF dynamics integration 

– Short-Term Validation 
• Validation of attitude GNC algorithms, mode management and FDIR 

strategies 
• Carried out with a High Fidelity Analysis Simulator (Hi-FAS) 

featuring 6-DOF dynamics integration at 10 Hz 

• Reference aerobraking scenario for validation: 
– Mars Sample Return – like (aerobraking starts in Aug 2023) 

• Initial conditions: orbital period of 0.5 Sol, orbit inclination of 45º  
• S/C ballistic coefficient: 56.5 kg/m2 

• Walk-In phase: 2 weeks duration, 8 manoeuvres 
• Main Phase: 2-D Corridor, baseline ABM frequency <0.5/day 
• Walk-Out phase: 600 x 600 km altitude target orbit, lifetime kept 

above 4 days with 1 ABM per day 
• Superior Solar Conjunction: safe orbit at 150 km altitude 

ValidationValidation  CampaignCampaign  
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• Three sets of scenarios were run: 
– Reference Scenario:  

• Assessment of pericentre altitude guidance performance with 
– Perfect knowledge of atmosphere and orbit evolution  

– Montecarlo Scenario:  
• Statistical assessment of performance and robustness of proposed 

strategies in real mission scenarios, featuring: 
– Randomly perturbed atmospheres, ABM execution errors, onboard 

measurements errors, S/C state estimation errors etc… 

– Worst Scenario:  
• Assessment of robustness of proposed strategies against worst 

scenarios in terms of atmosphere unpredictability: 
– True orbit simulated under the LMD Dust Storm of 2001 

 

• Success Criteria for the tests: 
– AB-THERM-1: No violation of solar array damage curve 
– AB-ORB-1: Orbital lifetime always above 4 days 
– AB-OPER-1: Overall aerobraking duration below 9 months 

(excluding superior solar conjunction event) 

Long Long TermTerm  ValidationValidation  CampaignCampaign  
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• Reference Scenario Tests: 
– All success criteria met 
– Good overall performance: 

• Duration: 274 days 
• Cost: 148 m/s (about 100 ABMs) 

 

• Montecarlo Tests: 
– All success criteria met 
– Limited dispersion in performance 
– Good PTE performance: 

• Prediction errors < 80 seconds 
 

• Worst Scenario Tests: 
– AB-THERM-1 violations 
– More conservative corridor 

required for dust storm season: 
• New corridor  no violations 

• Performance deterioration:  
– 50 days (duration); 10 m/s (cost) 

Long Long TermTerm  ValidationValidation  CampaignCampaign: : ResultsResults  

PERICENTRE HEAT FLUX VS HEAT 
LOAD FOR REFERENCE SCENARIO 

WORST ORBIT HEAT FLUX-HEAT 
LOAD PER MONTECARLO SIM. 
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• The RAAS project has permitted to: 
– Study the main factors limiting autonomy and robustness: 

• Atmosphere prediction uncertainty, dust storm events 
• Atmosphere scale factor for orbit predictions 

– Improve efficiency and robustness of pericentre control: 
• Two-fold guidance approach: Baseline plus Correction ABMs 

– Propose and validate new mission operations approaches 
– Propose and validate S/C attitude modes and FDIR concepts: 

• Autonomous mode management, safe mode, automatic pop-up 

– Develop new tools to validate algorithms and strategies: 
• Mission Analysis Simulator, High Fidelity Analysis Simulator 

 

• Future studies should aim at: 
– Increasing the TRL of the proposed algorithms and strategies 

• Current TRL for most of technologies is 2-3 
• Onboard algorithms require testing on space qualified computers 

and additional theoretical research to improve proof-of-concept 
• Ground algorithms and operations strategy must be tested with real 

mission architectures (ground station, real time effects…) 

ConclusionsConclusions  and and wayway  forwardforward  


